Efficient Meta Learning via Minibatch Proximal Update

Pan Zhou
Joint work with Xiao-Tong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng
National University of Singapore
pzhou@u.nus.edu

Dec 11, 2019
Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good prior model initialization \mathcal{W} from observed tasks such that \mathcal{W} is close to the optimal models of new similar tasks, promoting new task learning.
Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good prior model initialization \mathbf{w} from observed tasks such that \mathbf{w} is close to the optimal models of new similar tasks, promoting new task learning.

- Training model: given a task distribution \mathcal{T}, we minimize a bi-level meta learning model

$$
\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\mathbf{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\mathbf{w}_{T_i}) + \frac{\lambda}{2} \| \mathbf{w} - \mathbf{w}_{T_i} \|_2^2,
$$

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{ (x_s, y_s) \}_{s=1}^{K}$

$$
\mathcal{L}_{D_{T_i}} = \frac{1}{K} \sum_{(x,y) \in D_{T_i}} \ell(f(\mathbf{w}, x), y) \text{ is empirical loss with predictor } f \text{ and loss } \ell.
$$
Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good **prior model initialization** \boldsymbol{w} from observed tasks such that \boldsymbol{w} is close to the optimal models of new similar tasks, promoting new task learning.

- **Training model:** given a task distribution \mathcal{T}, we minimize a **bi-level** meta learning model

 $$
 \min_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\boldsymbol{w}_{T_i}) + \frac{\lambda}{2} \| \boldsymbol{w} - \boldsymbol{w}_{T_i} \|^2_2,
 $$

 where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(x_s, y_s)\}_{s=1}^{K}$

 $$
 \mathcal{L}_{D_{T_i}} = \frac{1}{K} \sum_{(x, y) \in D_{T_i}} \ell(f(\boldsymbol{w}, x), y)
 $$

 is empirical loss with predictor f and loss ℓ.

 update task-specific solution
Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good **prior model initialization** \mathbf{w} from observed tasks such that \mathbf{w} is close to the optimal models of new similar tasks, promoting new task learning

- **Training model**: given a task distribution \mathcal{T}, we minimize a bi-level meta learning model

$$
\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\mathbf{w_{T_i}}} \mathcal{L}_{D_{T_i}}(\mathbf{w_{T_i}}) + \frac{\lambda}{2} \| \mathbf{w} - \mathbf{w_{T_i}} \|_2^2
$$

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(x_s, y_s)\}_{s=1}^{K}$

$$
\mathcal{L}_{D_{T_i}} = \frac{1}{K} \sum_{(x, y) \in D_{T_i}} \ell(f(\mathbf{w}, x), y)
$$

is empirical loss with predictor f and loss ℓ.
Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good prior model initialization \mathbf{w} from observed tasks such that \mathbf{w} is close to the optimal models of new similar tasks, promoting new task learning.

• **Training model:** given a task distribution \mathcal{T}, we minimize a bi-level meta learning model

\[
\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \min_{\mathbf{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\mathbf{w}_{T_i}) + \frac{\lambda}{2} \| \mathbf{w} - \mathbf{w}_{T_i} \|^2_2 ,
\]

where each task $T_i \sim \mathcal{T}$ has K training samples $D_{T_i} = \{(x_s, y_s)\}_{s=1}^{K}$

\[
\mathcal{L}_{D_{T_i}} = \frac{1}{K} \sum_{(x,y) \in D_{T_i}} \ell(f(\mathbf{w}, x), y)
\]

is empirical loss with predictor f and loss ℓ.

small average distance to optimum models of all tasks in expectation
Meta-MinibatchProx learns a good prior model initialization w from observed tasks such that w is close to the optimal models of new similar tasks, promoting new task learning.

- **Test model:** given a randomly sampled task $T \sim \mathcal{T}$ consisting of K samples $D_T = \{(x_s, y_s)\}_{s=1}^K$

$$
\min_{w_T} \mathcal{L}_{D_T}(w_T) + \frac{\lambda}{2} \| w^* - w_T \|_2^2,
$$

where w^* denotes the learnt prior initialization.
Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good prior model initialization w from observed tasks such that w is close to the optimal models of new similar tasks, promoting new task learning.

- **Test model:** Given a randomly sampled task $T \sim \mathcal{T}$ consisting of K samples $D_T = \{(x_s, y_s)\}_{s=1}^K$

 $\min_{w_T} \mathcal{L}_{D_T}(w_T) + \frac{\lambda}{2}\|w^* - w_T\|^2_2,$

 where w^* denotes the learnt prior initialization.

- **Benefit:** A few data is sufficient for adaptation

 the learnt prior initialization w^* is close to optimum w_T when training and test tasks are sampled from the same distribution.
Optimization Algorithm

We use SGD based algorithm to solve bi-level training model:

$$\min_w \left\{ F(w) := \frac{1}{n} \sum_{i=1}^{n} \min_{w_{T_i}} \mathcal{L}_{D_{T_i}}(w_{T_i}) + \frac{\lambda}{2} \|w - w_{T_i}\|_2^2 \right\}$$
Optimization Algorithm

We use SGD based algorithm to solve bi-level training model:

$$
\min_{\mathbf{w}} \ \left\{ F(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\mathbf{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\mathbf{w}_{T_i}) + \frac{\lambda}{2} \| \mathbf{w} - \mathbf{w}_{T_i} \|_2^2 \right\}
$$

- Step 1. select a mini-batch of task \(\{T_i\} \) of size \(b_s \).
Optimization Algorithm

We use SGD based algorithm to solve bi-level training model:

$$\min_w \left\{ F(w) := \frac{1}{n} \sum_{i=1}^{n} \min_{w_{T_i}} \mathcal{L}_{D_{T_i}}(w_{T_i}) + \frac{\lambda}{2} \| w - w_{T_i} \|_2^2 \right\}$$

- Step1. select a mini-batch of task $\{T_i\}$ of size b_s.
- Step2. for T_i, compute an approximate minimizer:

$$w_{T_i} \approx \arg\min_{w_{T_i}} \left\{ g(w_{T_i}) := \mathcal{L}_{D_{T_i}}(w_{T_i}) + \frac{\lambda}{2} \| w - w_{T_i} \|_2^2 \right\}, \text{ namely } \| \nabla g(w_{T_i}) \|_2^2 \leq \epsilon_s$$
We use SGD based algorithm to solve bi-level training model:

\[
\min_w \left\{ F(w) := \frac{1}{n} \sum_{i=1}^{n} \min_{w_{T_i}} \mathcal{L}_{D_{T_i}} (w_{T_i}) + \frac{\lambda}{2} \| w - w_{T_i} \|_2^2 \right\}
\]

- **Step1.** select a mini-batch of task \(\{T_i\} \) of size \(b_s \).

- **Step2.** for \(T_i \), compute an approximate minimizer:
 \[
 w_{T_i} \approx \arg\min_{w_{T_i}} \{ g(w_{T_i}) := \mathcal{L}_{D_{T_i}} (w_{T_i}) + \frac{\lambda}{2} \| w - w_{T_i} \|_2^2 \}, \text{ namely } \| \nabla g(w_{T_i}) \|_2^2 \leq \epsilon_s
 \]

- **Step3.** update the prior model:
 \[
 w = w - \eta_s \lambda (w - \frac{1}{b_s} \sum_{i=1}^{b_s} w_{T_i})
 \]
Optimization Algorithm

We use SGD based algorithm to solve bi-level training model:

$$\min_{\mathbf{w}} \left\{ F(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} \min_{\mathbf{w}_{T_i}} \mathcal{L}_{D_{T_i}}(\mathbf{w}_{T_i}) + \frac{\lambda}{2} \| \mathbf{w} - \mathbf{w}_{T_i} \|_2^2 \right\}$$

• Step1. select a mini-batch of task \(\{T_i\}\) of size \(b_s\).

• Step2. for \(T_i\), compute an approximate minimizer:

\[\mathbf{w}_{T_i} \approx \arg\min_{\mathbf{w}_{T_i}} \{ g(\mathbf{w}_{T_i}) := \mathcal{L}_{D_{T_i}}(\mathbf{w}_{T_i}) + \frac{\lambda}{2} \| \mathbf{w} - \mathbf{w}_{T_i} \|_2^2 \}, \text{ namely } \| \nabla g(\mathbf{w}_{T_i}) \|_2^2 \leq \epsilon_s \]

• Step3. update the prior model:

\[\mathbf{w} = \mathbf{w} - \eta_s \lambda(\mathbf{w} - \frac{1}{b_s} \sum_{i=1}^{b_s} \mathbf{w}_{T_i}) \]

Theorem 1 (convergence guarantees, informal).

(1) Convex setting, i.e. convex \(\phi_{D_{T_i}}(\mathbf{w})\). We prove \(\mathbb{E}[\| \mathbf{w}^S - \mathbf{w}^* \|_2^2] \leq \mathcal{O}\left(\frac{1}{S}\right)\).

(2) Nonconvex setting, i.e. smooth \(\phi_{D_{T_i}}(\mathbf{w})\). We prove \(\mathbb{E}_s[\| \nabla F(\mathbf{w}^s) \|_2^2] \leq \mathcal{O}\left(\frac{1}{\sqrt{S}}\right)\).
Generalization Performance Guarantee

- Ideally, for a given task $T \sim \mathcal{T}$, one should train the model on the population risk

 Population solution: $w_{T,P}^* = \arg\min_{w_T} \{ \mathcal{L}(w_T) := \mathbb{E}_{(x,y) \sim T} \ell(f(w_T, x), y) \}$.

- In practice, we only have K samples and adapt the learnt prior model w^* to the new task:

 Empirical solution: $w_T^* = \arg\min_{w_T} \mathcal{L}_{D_T}(w_T) + \frac{\lambda}{2} \|w^* - w_T\|_2^2$.

- Since $w_{T,P}^* \neq w_T^*$, why w_T^* is good for generalization in few-shot learning problem?
Generalization Performance Guarantee

• Ideally, for a given task \(T \sim \mathcal{T} \), one should train the model on the population risk

 Population solution: \(\mathbf{w}^*_{T,P} = \arg\min_{\mathbf{w}_T} \{ \mathcal{L}(\mathbf{w}_T) : = \mathbb{E}_{(x,y) \sim T} \ell(f(\mathbf{w}_T, x), y) \} \).

• In practice, we only have \(K \) samples and adapt the learnt prior model \(\mathbf{w}^* \) to the new task:

 Empirical solution: \(\mathbf{w}^*_{T} = \arg\min_{\mathbf{w}_T} \mathcal{L}_{D_T}(\mathbf{w}_T) + \frac{\lambda}{2} \|\mathbf{w}^* - \mathbf{w}_T\|^2_2 \).

• Since \(\mathbf{w}^*_{T,P} \neq \mathbf{w}^*_{T} \), why \(\mathbf{w}^*_{T} \) is good for generalization in few-shot learning problem?

Theorem 2 (generalization performance guarantee, informal).

Suppose each loss \(\phi_{D_{T_i}}(\mathbf{w}) \) is convex and is smooth. Let \(D_T = \{(x_i, y_i)\}_{i=1}^K \sim T \). Then we have

\[
\mathbb{E}_{T \sim T} \mathbb{E}_{D_T \sim T} (\mathcal{L}(\mathbf{w}^*_T) - \mathcal{L}(\mathbf{w}^*_T, P)) \leq \frac{c}{\sqrt{K}} \mathbb{E}[\|\mathbf{w}^* - \mathbf{w}^*_T, P\|_2^2].
\]

Remark: strong generalization performance, as our training model guarantee

the learnt prior \(\mathbf{w}^* \) is close to the optimum model \(\mathbf{w}^*_T, P \).
Experimental results

Few-shot regression: smaller mean square error (MSE) between prediction and ground truth

![Graph showing MSE for different methods across different shot numbers and ways.](a Visual illustration)

Few-shot classification: higher classification accuracy

- **MiniImageNet**
 - 1-shot 5-way: 0.8%
 - 5-shot 5-way: 1.15%

- **TieredImageNet**
 - 1-shot 5-way: 3.31%
 - 5-shot 5-way: 1.44%

![Bar chart showing classification accuracy for different methods across different shot numbers and ways.](b MSE)

- **MiniImageNet**
 - 1-shot 20-way: 2.41%
 - 5-shot 20-way: 5.15%
 - 1-shot 10-way: 1.12%
 - 5-shot 10-way: 1.18%

- **TieredImageNet**
 - 1-shot 5-way: 1.12%
 - 5-shot 5-way: 0.077
POSTER # 26

05:00 -- 07:00 PM @ East Exhibition Hall B + C

Thanks!