Splitting Steepest Descent for Growing Neural Architectures

Qiang Liu, Lemeng Wu* and Dilin Wang*

Department of Computer Science
UT Austin
Our goal: finding small & accurate neural networks

- lightweight
- energy-efficient

- large models
- energy-intensive
Splitting yields adaptive net structure optimization
Intuition: escaping local minima

- A simple network:

\[\mathcal{L}(\theta) := \mathbb{E}_{x \sim D} \left[\Phi(\sigma(\theta, x)) \right]. \]
Intuition: escaping local minima

- Splitting \(\theta \) into \(m \) copies \(\{w_i, \theta_i\}_{i=1}^m \):

\[
\mathcal{L}(\{\theta_i, w_i\}) := \mathbb{E}_{x \sim D} \left[\Phi \left(\sum_{i=1}^m w_i \sigma(\theta_i, x) \right) \right]
\]

- A simple network:

\[
\mathcal{L}(\theta) := \mathbb{E}_{x \sim D} \left[\Phi \left(\sigma(\theta, x) \right) \right].
\]
Intuition: escaping local minima

- **Splitting θ into m copies $\{w_i, \theta_i\}_{i=1}^m$:**

 $$\mathcal{L}(\{\theta_i, w_i\}) := \mathbb{E}_{x \sim D} \left[\Phi\left(\sum_{i=1}^{m} w_i \sigma(\theta_i, x) \right) \right]$$

- **A simple network:**

 $$\mathcal{L}(\theta) := \mathbb{E}_{x \sim D} \left[\Phi\left(\sigma(\theta, x) \right) \right].$$

- **Smooth loss change:**

 $$\sum_{i=1}^{m} w_i = 1, \quad ||\theta_i - \theta||_2 \leq \epsilon.$$
Splitting Steepest Descent

- How to choose m and $\{\theta_i, w_i\}$ optimally?

$$\min_{m, \{\theta_i, w_i\}_{i=1}^m} \left\{ \mathcal{L}(\{\theta_i, w_i\}) - \mathcal{L}(\theta) \quad \text{s.t.} \quad ||\theta_i - \theta||_2 \leq \epsilon, \sum_{i=1}^m w_i = 1, \ w_i > 0, \ \forall \ i \right\}. $$
Splitting Steepest Descent

How to choose m and $\{\theta_i, w_i\}$ optimally?

$$
\min_{m, \{\theta_i, w_i\}_{i=1}^m} \left\{ \mathcal{L}(\{\theta_i, w_i\}) - \mathcal{L}(\theta) \text{ s.t. } ||\theta_i - \theta||_2 \leq \epsilon, \sum_{i=1}^m w_i = 1, w_i > 0, \forall i \right\}.
$$

Splitting-index, minimum eigenvalue

$$
= \frac{\epsilon^2}{2} \min \left\{ \lambda_{\min}(S(\theta)), 0 \right\} + \mathcal{O}(\epsilon^3)
$$

CLOSED-FORM

with

$$
S(\theta) = \mathbb{E}_{x \sim D} \left[\nabla_\sigma \Phi(\sigma(\theta, x)) \nabla^2_{\theta\theta} \sigma(\theta, x) \right],
$$

Splitting-matrix
Splitting Steepest Descent

- How to choose m and $\{\theta_i, w_i\}$ optimally?

$$
\min_{m,\{\theta_i,w_i\}_{i=1}^m} \left\{ \mathcal{L}(\{\theta_i,w_i\}) - \mathcal{L}(\theta) \quad \text{s.t.} \quad ||\theta_i - \theta||_2 \leq \epsilon, \sum_{i=1}^m w_i = 1, w_i > 0, \forall i \right\}.
$$

Splitting-index, minimum eigenvalue

$$
= \frac{\epsilon^2}{2} \min \left\{ \lambda_{\min}(S(\theta)), 0 \right\} + \mathcal{O}(\epsilon^3)
$$

CLOSED-FORM

with

$$
S(\theta) = \mathbb{E}_{x \sim D} \left[\nabla_\sigma \Phi(\sigma(\theta, x)) \nabla^2_{\theta\theta} \sigma(\theta, x) \right],
$$

- Optimal splitting strategy

$$
\lambda_{\min}S(\theta) \geq 0, \quad \text{no splitting}
$$

$$
\lambda_{\min}S(\theta) < 0, \quad m = 2, \quad \theta_1 = \theta + \epsilon v_{\min}(S(\theta)), \quad \theta_2 = \theta - \epsilon v_{\min}(S(\theta)), \quad w_1 = w_2 = 1/2.
$$
Our Algorithm

Continuous optimization!
Growing Interpretable Networks

- Training the interpretable neural network by Li et al., 2018\(^1\).

Results on CIFAR10

- Compare with pruning methods: batch-normalization-based pruning (Bn-prune) (Liu et al., 2017\(^1\)) and L1-based pruning (L1-prune) (Li et al., 2017\(^2\))

![Graphs showing test accuracy for MobileNet and VGG19 models compared with different pruning methods.](image)

2. Li et al., Pruning filters for efficient convnets. ICLR. 2017
Keyword Spotting on Microcontrollers

- Identifying a set of keywords from speech signal, e.g. “hey siri"
- use benchmark from Zhang et al., 2017

<table>
<thead>
<tr>
<th>Method</th>
<th>Acc</th>
<th>Params (K)</th>
<th>Ops (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN</td>
<td>86.94</td>
<td>495.7</td>
<td>1.0</td>
</tr>
<tr>
<td>CNN</td>
<td>92.64</td>
<td>476.7</td>
<td>25.3</td>
</tr>
<tr>
<td>BasicLSTM</td>
<td>93.62</td>
<td>492.6</td>
<td>47.9</td>
</tr>
<tr>
<td>LSTM</td>
<td>94.11</td>
<td>495.8</td>
<td>48.4</td>
</tr>
<tr>
<td>GRU</td>
<td>94.72</td>
<td>498.0</td>
<td>48.4</td>
</tr>
<tr>
<td>CRNN</td>
<td>94.21</td>
<td>485.0</td>
<td>19.3</td>
</tr>
<tr>
<td>DS-CNN</td>
<td>94.85</td>
<td>413.7</td>
<td>56.9</td>
</tr>
<tr>
<td>Ours</td>
<td>95.36</td>
<td>282.6</td>
<td>39.2</td>
</tr>
</tbody>
</table>

Conclusion

- Incremental neural structure optimization with splitting gradient
- Simple and fast, promising in practice

Thank you!

Poster #35, Today 10:45am – 12:45am @East Exhibition Hall B+C