Positional Normalization (PONO)

Boy Li*, Felix Wu*, Kilian Q. Weinberger, Serge Belongie

Cornell University, Cornell Tech
Deep Features (in a given layer)

Input images

\(m^{th} \text{ Layer} \)

Features

Batch

Fish

Mona Lisa

Flatten

Height & Width

Channels
Deep Features (in a given layer)

Input images

m^{th} Layer

Features

Batch

Flatten

Height & Width

“Feature Block”

Channels

Batch

Channels
Normalization

\[X \in \mathbb{R}^{B \times C \times H \times W} \]

\[X_{new} = \frac{X - \mu}{\sigma} \]
Normalization

\[X \in \mathbb{R}^{B \times C \times H \times W} \]

\[X_{new} = (X - \mu) / \sigma \]
Normalization Variants

Batch Norm
(Ioffe & Szegedy, ICML 2015)

H: Height
W: Width

C: Channel
B: Batch

Mean / Std:

Subtracting the mean and dividing by the standard deviation (std)
Normalization Variants

Batch Norm
(Ioffe & Szegedy, ICML 2015)

Instance Norm
(Ulyanov et al., arXiv 2016)

Mean / Std:

Subtracting the mean and dividing by the standard deviation (std)
Normalization Variants

Batch Norm
(Ioffe & Szegedy, ICML 2015)

Instance Norm
(Ulyanov et al., arXiv 2016)

Group Norm
(Wu & He, ECCV 2018)

Mean / Std: Subtracting the mean and dividing by the standard deviation (std)
Normalization Variants

Batch Norm
(Ioffe & Szegedy, ICML 2015)

Instance Norm
(Ulyanov et al., arXiv 2016)

Group Norm
(Wu & He, ECCV 2018)

Layer Norm
(Ba et al., NeurIPS 2016)

Mean / Std:
Subtracting the mean and dividing by the standard deviation (std)
Normalization Variants

- **Batch Norm**
 - (Ioffe & Szegedy, ICML 2015)

- **Instance Norm**
 - (Ulyanov et al., arXiv 2016)

- **Group Norm**
 - (Wu & He, ECCV 2018)

- **Layer Norm**
 - (Ba et al., NeurIPS 2016)

Mean / Std:

Subtracting the mean and dividing by the standard deviation (std)
Normalization Variants

- **Batch Norm** (Ioffe & Szegedy, ICML 2015)
- **Instance Norm** (Ulyanov et al., arXiv 2016)
- **Group Norm** (Wu & He, ECCV 2018)
- **Layer Norm** (Ba et al., NeurIPS 2016)
- **Positional Norm**

Normalization Variants:

- **Mean / Std:** Subtracting the mean and dividing by the standard deviation (std)
Positional Normalization (PONO)

\[X \in \mathbb{R}^{B \times C \times H \times W} \]

Moments:

\[
\mu_{b,h,w} = \frac{1}{C} \sum_{c=1}^{C} X_{b,c,h,w}
\]

\[
\sigma_{b,h,w} = \sqrt{\frac{1}{C} \sum_{c=1}^{C} (X_{b,c,h,w} - \mu_{b,h,w})^2}
\]
Moments in PONO

Early layer → Deeper Layer

μ

σ

μ

σ
Moments = Trash?
Moments ≠ Trash

Moment Shortcut (MS)

Moment Shortcut (MS) + PONO = PONO-MS
Image Translation

Without PONO-MS

Dataset Source: https://github.com/HsinYingLee/DRIT Model Source: https://github.com/NVlabs/MUNIT
Image Translation

Without PONO-MS

Dataset Source: https://github.com/HsinYingLee/DRIT Model Source: https://github.com/NVlabs/MUNIT
Image Translation

With PONO-MS

Dataset Source: https://github.com/HsinYingLee/DRIT Model Source: https://github.com/NVlabs/MUNIT
Come to our poster for more details!

East Exhibition Hall B + C #147