Learning Positive-Valued Functions with Pseudo Mirror Descent

Yingxiang Yang*, Haoxiang Wang*, Negar Kiyavash†, Niao He*

* University of Illinois at Urbana-Champaign (UIUC)
† Ecole Polytechnique Fédérale de Lausanne (EPFL)

NeurIPS 2019, Vancouver
Motivation: positive-valued functions appear ubiquitously in machine learning.

- Inference: learning probability density functions.
- Point process prediction: learning intensity-related functions.
- Ensemble learning: learning ensemble weight functions.
A general formulation:

\[
\min_{x \in [\mathcal{H}]_+} f(x).
\]

- \(f \): objective functional.
- \(\mathcal{H} \): a Hilbert space with norm \(\| \cdot \| \) and inner product \(\langle \cdot, \cdot \rangle \).

The positivity constraint:

\[
[\mathcal{H}]_+ := \{ x \in \mathcal{H} : x(t) \geq 0, \ \forall t \in \text{support}(x) \}.
\]
Learning Positive-Valued Functions
challenges and our contributions

Existing recipes for handling the positivity constraint:

- When f is convex, do projected gradient descent in reproducing kernel Hilbert spaces (RKHSs).
 - Theoretically guaranteed, computationally expensive on large datasets.
- Link function approach: set $x = y^2$ and optimize over y.
 - Computationally more efficient, compromises theoretical guarantees.
Can we have theoretical guarantees and computational efficiency at the same time?

- Our approach: start from mirror descent algorithm.
A Mirror-Descent-Oriented Algorithm

Classical mirror descent iterate (Nemirovski & Yudin, 1983):

\[x^{(k+1)} = \arg\min_{x \in \mathcal{H}} \left\{ f(x^{(k)}) + \eta_k \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle + \Delta_{\Phi}(x, x^{(k)}) \right\}. \]

(1)

- \(\Phi \): a strongly convex function.
- \(\eta_k \): the step size.
- \(\Delta_{\Phi}(x, y) \) is the Bregman divergence:

\[\Delta_{\Phi}(x, y) = \Phi(x) - \Phi(y) - \langle \nabla \Phi(y), x - y \rangle. \]

(2)
Certain $\Delta \phi$ would lead to *positivity-preserving updates*:

$$x^{(k+1)}(t) = x^{(k)}(t) \exp(-\eta_k [\nabla f(x^{(k)})](t)).$$

- $\Delta \phi(x, y) = \langle x, \log x - \log y \rangle$.
- \mathcal{H} chosen to be L_2 Hilbert space.

Challenge: gradient not always available in practice.
A Mirror-Descent-Oriented Algorithm

Poisson maximum log-likelihood estimation:

$$\min_{x \in [L_2[0,1]]_+} f(x) := \int_0^1 x(t) - x^*(t) \log x(t) dt.$$ (3)

- x^*: ground truth intensity function.

The gradient

$$[\nabla f(x)](t) = 1 - \frac{x^*(t)}{x(t)}$$ (4)

requires value of x^* (unknown in practice!)
Pseudo-gradients (Polyak, 1973):

\[\mathbb{E}[g^{(k)}] \]

\[\nabla f(x^{(k)}) \]

Figure: Pseudo-gradient for gradient descent.

- \(g^{(k)} \) is a pseudo-gradient when \(\theta < 90^\circ \):

\[\langle \mathbb{E}[g^{(k)}], \nabla f(x^{(k)}) \rangle \geq 0. \]
Generalizing the Pseudo-Gradients

Pseudo-gradients for mirror descent (this work):

\[\nabla_f\Phi(\nabla\Phi(x^{(k)})) \]

\[\langle \mathbb{E}[g^{(k)}], \nabla_f\Phi(\nabla\Phi(x^{(k)})) \rangle \geq 0. \]

\[f_{\Phi}(z) = f(\nabla\Phi^*(z)) \] where \(\Phi^* \) is the Fenchel dual of \(\Phi \).

Figure: Pseudo-gradient for mirror descent.

\(\mathbb{E}[g^{(k)}] \)
The pseudo mirror descent (PMD) algorithm:

\[
\text{PMD} = \text{classical mirror descent} + \text{pseudo-gradients}.
\]

Theoretical guarantees?

- Yes! Under standard assumptions, converges in
 - gradient norm at rate \(O(1/\sqrt{k})\).
 - objective value at rate \(O(1/k)\) (with Polyak-Łojasiewicz condition).

Can pseudo-gradients be efficiently constructed?

- Yes! For example, use the kernel embedding of \(\nabla f_\Phi(\nabla \Phi(x))\).
For the Poisson example: $\nabla f_\Phi(\nabla \Phi(x)) = x - x^*$, and

$$g^{(k)}(t) = \sum_{j=1}^{N_1} K(\tau_j, t) - \sum_{i=1}^{N_2} K(\tau_i, t)$$

for a positive definite kernel $K(\cdot, \cdot)$.

- τ_j’s: sampled from $x^{(k)}$.
- τ_i’s: sampled from x^*.
Figure: Basketball shot distance dataset: recovery of the intensities using pseudo mirror descent (red curve), the link function approach), and neural networks (yellow curve).
Poster Session

Poster 55

East Exhibition Hall B+C

Tuesday, Dec. 10th, 5:30 - 7:30 p.m.