UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization

Ali Kavis1
EPFL

Kfir Y. Levy1
Technion

Francis Bach
INRIA

Volkan Cevher
EPFL

NeurIPS 2019

December 10, 2019

1Equal contribution
Introduction

Problem Definition

\[\min_{x \in \mathcal{K}} f(x) \]

\(f : \mathcal{K} \rightarrow \mathbb{R} \) is a convex function

\(\mathcal{K} \subset \mathbb{R}^d \) is a \textbf{compact}, convex set
Motivation

Aim of this work

• **Universal:** Optimal for smooth and non-smooth problems

• **Adaptive:** No knowledge of Lipschitz constant and variance

• **Constrained:** Extend existing results to constrained problems
Our algorithm: UniXGrad

Algorithm 1 UniXGrad

Input: # of iterations T, $y_0 \in K$, weight $\alpha_t = t$, learning rate $\{\eta_t\}_{t \in [T]}

1: for $t = 1, \ldots, T$ do

2: $x_t = \text{arg min}_{x \in K} \alpha_t \langle x, M_t \rangle + \frac{1}{\eta_t} D_R(x, y_{t-1})$, $M_t = \nabla f(\tilde{z}_t)$

3: $y_t = \text{arg min}_{y \in K} \alpha_t \langle y, g_t \rangle + \frac{1}{\eta_t} D_R(y, y_{t-1})$, $g_t = \nabla f(\bar{x}_t)$

4: end for

\[\bar{x}_t = \frac{\alpha_t x_t + \sum_{i=1}^{t-1} \alpha_i x_i}{\sum_{i=1}^{t} \alpha_i} \quad \tilde{z}_t = \frac{\alpha_t y_{t-1} + \sum_{i=1}^{t-1} \alpha_i x_i}{\sum_{i=1}^{t} \alpha_i} \] (2)

\[\eta_t = \frac{2D}{\sqrt{1 + \sum_{i=1}^{t-1} \alpha_i^2 \|g_i - M_i\|^2}} \] (3)
Conversion Scheme and Adaptive Bounds

Weighted Regret:

\[R_T(x_*) = \sum_{t=1}^{T} \alpha_t \langle \nabla f(\bar{x}_t), x_t - x_* \rangle \]

Adaptive bound

\[R_T(x_*) \leq \frac{7}{2} D \sqrt{1 + \sum_{t=1}^{T} \alpha_t^2 \|g_t - M_t\|_x^2} - \frac{D}{2} \] (4)

Lemma (Regret ⇒ Rate)

\[f(\bar{x}_T) - f(x_*) \leq \frac{2R_T(x_*)}{T^2}. \] (5)
Convergence in Non-smooth Setting

Theorem

If f is G-Lipschitz, Algorithm 1 guarantees

$$E \left[f(\bar{x}_T) \right] - \min_{x \in K} f(x) \leq \frac{6D}{T^2} + \frac{14GD}{\sqrt{T}}.$$ \hspace{1cm} (6)

Remark

- Regret analysis is agnostic to definitions of g_t and M_t.
- Conversion scheme requires $g_t = \nabla f(\bar{x}_t)$.
Convergence in Smooth Setting

Theorem

If f is L-smooth and oracle is **deterministic**, Algorithm 1 ensures

$$f(\bar{x}_T) - \min_{x \in K} f(x) \leq \frac{20\sqrt{7}D^2L}{T^2}. \quad (7)$$

If oracle is **stochastic**,

$$\mathbb{E}[f(\bar{x}_T)] - \min_{x \in K} f(x) \leq \frac{224\sqrt{14}D^2L}{T^2} + \frac{14\sqrt{2}\sigma D}{\sqrt{T}}. \quad (8)$$

Remark

f is L-smooth \Rightarrow bounded gradients are not required.
Convergence Behavior

Least-squares with ℓ_2 norm ball constraint:

$$\min_{\|x\|_2 < r} \frac{1}{2n} \|Ax - b\|^2_2,$$

(a) Average Iterate

(b) Last Iterate

Figure 1: Convergence in the stochastic oracle setting, $x_* \in \text{Boundary}(\mathcal{K})$
SVM Classification

- SVM with squared Hinge loss and ℓ_2 regularization
- breast-cancer data from libsvm dataset, 80/20 train/test ratio
- Training batch size: 5, number of runs: 5.

![Graph showing convergence and test accuracy](image)

(a) Convergence w.r.t. training data
(b) Test Accuracy

Figure 2: SVM classification using breast-cancer data (Chang and Lin, 2011)