Regularization Effect of Large Initial Learning Rate

Yuanzhi Li*
Carnegie Mellon University

Colin Wei*
Stanford University

Tengyu Ma
Stanford University
Large **Initial** Learning Rate is Crucial for Generalization
Large **Initial** Learning Rate is Crucial for Generalization

• Common schedule: large initial learning rate + annealing
Large **Initial** Learning Rate is Crucial for Generalization

- Common schedule: large initial learning rate + annealing
- ... But small learning rate: better train and test performance up until annealing

![Graph showing train and validation accuracy over epochs for large and small initial learning rates with and without annealing.](image-url)
Large **Initial** Learning Rate is Crucial for Generalization

- Common schedule: large initial learning rate + annealing
- ... But small learning rate: better train and test performance up until annealing

- Large LR outperforms small LR after annealing!
LR schedule changes order of learning patterns => generalization
LR schedule changes order of learning patterns => generalization

• Small LR quickly memorizes hard-to-fit “class signatures”
LR schedule changes order of learning patterns => generalization

 • Small LR quickly memorizes **hard-to-fit** “class signatures”
 • Ignores other patterns, harming generalization
LR schedule changes order of learning patterns => generalization

- Small LR quickly memorizes **hard-to-fit** “class signatures”
 - Ignores other patterns, harming generalization
- Large initial LR + annealing learns **easy-to-fit** patterns first
LR schedule changes order of learning patterns => generalization

• Small LR quickly memorizes **hard-to-fit** “class signatures”
 • Ignores other patterns, harming generalization
• Large initial LR + annealing learns **easy-to-fit** patterns first
 • Only memorizes hard-to-fit patterns after annealing
LR schedule changes order of learning patterns => generalization

- Small LR quickly memorizes **hard-to-fit** “class signatures”
 - Ignores other patterns, harming generalization
- Large initial LR + annealing learns **easy-to-fit** patterns first
 - Only memorizes hard-to-fit patterns after annealing
 - => learns to use all patterns, helping generalization!
LR schedule changes order of learning patterns => generalization

• Small LR quickly memorizes **hard-to-fit** “class signatures”
 • Ignores other patterns, harming generalization

• Large initial LR + annealing learns **easy-to-fit** patterns first
 • Only memorizes hard-to-fit patterns after annealing
 • => learns to use all patterns, helping generalization!

• Intuition: larger LR
 • ⇒ larger noise in activations
LR schedule changes order of learning patterns => generalization

- Small LR quickly memorizes **hard-to-fit** “class signatures”
 - Ignores other patterns, harming generalization
- Large initial LR + annealing learns **easy-to-fit** patterns first
 - Only memorizes hard-to-fit patterns after annealing
 - => learns to use all patterns, helping generalization!

- Intuition: larger LR
 - ⇒ larger noise in activations
 - ⇒ effectively weaker representational power
LR schedule changes order of learning patterns => generalization

• Small LR quickly memorizes hard-to-fit “class signatures”
 • Ignores other patterns, harming generalization
• Large initial LR + annealing learns easy-to-fit patterns first
 • Only memorizes hard-to-fit patterns after annealing
 • => learns to use all patterns, helping generalization!

• Intuition: larger LR
 • \(\Rightarrow \) larger noise in activations
 • \(\Rightarrow \) effectively weaker representational power
 • \(\Rightarrow \) won’t overfit to “signatures”
LR schedule changes order of learning patterns => generalization

- Small LR quickly memorizes **hard-to-fit** “class signatures”
 - Ignores other patterns, harming generalization
- Large initial LR + annealing learns **easy-to-fit** patterns first
 - Only memorizes hard-to-fit patterns after annealing
 - => learns to use all patterns, helping generalization!

- Intuition: larger LR
 - => larger noise in activations
 - => effectively weaker representational power
 - => won’t overfit to “signatures”

- Non-convexity is crucial: different LR schedules find different solutions
Demonstration on Modified CIFAR10
Demonstration on Modified CIFAR10

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

![original image]
Demonstration on Modified CIFAR10

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

(original image) (hard-to-fit patch indicating class)
Demonstration on Modified CIFAR10

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

Group 3: 60% examples with both patterns

original image hard-to-fit patch indicating class
Demonstration on Modified CIFAR10

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

Group 3: 60% examples with both patterns

- Small LR memorizes patch, **ignores** rest of the image
 - ⇒ learns image from **20%** examples

original image

hard-to-fit patch indicating class
Demonstration on Modified CIFAR10

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

Group 3: 60% examples with both patterns

- Small LR memorizes patch, *ignores* rest of the image
 - ⇒ learns image from **20%** examples

- Large initial LR initially ignores patch, only learns it after annealing
 - ⇒ learns image from **80%** examples
Theoretical Setting

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

Group 3: 60% examples with both patterns

[Diagram showing linearly classifiable patterns]
Theoretical Setting

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

Group 3: 60% examples with both patterns

- Linearly classifiable patterns
- Clustered but not linearly separable
Theoretical Setting

Group 1: 20% examples with hard-to-generalize, easy-to-fit patterns

Group 2: 20% examples with easy-to-generalize, hard-to-fit patterns

Group 3: 60% examples with both patterns

Contains both patterns
Conclusion
Conclusion

• Small LR optimizes faster, but generalizes worse than large initial LR + annealing
Conclusion

• Small LR optimizes faster, but generalizes worse than large initial LR + annealing
• Explanation: order of learning pattern types
 • Easy-to-generalize, hard-to-fit patterns
 • Hard-to-generalize, easy-to-fit patterns
Conclusion

• Small LR optimizes faster, but generalizes worse than large initial LR + annealing
• Explanation: order of learning pattern types
 • Easy-to-generalize, hard-to-fit patterns
 • Hard-to-generalize, easy-to-fit patterns
• SGD noise from large LR is mechanism for regularization
Conclusion

• Small LR optimizes faster, but generalizes worse than large initial LR + annealing
• Explanation: order of learning pattern types
 • Easy-to-generalize, hard-to-fit patterns
 • Hard-to-generalize, easy-to-fit patterns
• SGD noise from large LR is mechanism for regularization

Come find our poster: 10:45 AM -- 12:45 PM @ East Exhibition Hall B + C #144!